SMALL MAMMAL DIVERSITY AT 24 SITES
TARGETED FOR SHALE GAS EXPLORATION
IN THE KAROO

Nadine Aboul-Hassan, Gary Bronner & M. Justin O’Riain
Institute for Communities and Wildlife
Department of Biological Sciences
University of Cape Town
RATIONALE

- **FRACKING IMPACTS IN THE KAROO?**
 - Local communities
 - Habitat loss or degradation
 - Pollution
 - Groundwater contamination
 - Many others

- Landscape effects
 - Reduced ecosystem services
 - Loss of connectivity between habitats (reduced dispersal)

STUDY AIMS

Broad Goals

- Assess diversity of terrestrial small mammals at varying spatial scales
- Understand what drives diversity and shapes local communities assemblages
- Prioritize the sites most vulnerable to fracking

Specific Aims

- α, β and γ diversity of small mammal communities in footprint area and Nama-Karoo
- Small mammals: < 1kg body size – 3 orders
FRACKING IN THE KAROO

- **GEOGRAPHIC SCOPE**
 - Shale Gas Development Area
METHODS

- **SHERMAN TRAPPING**
 - Protocol
 - Checking
 - Processing

- **HISTORICAL RECORDS**

Transect x

\[15 \text{ m} \quad 100 \text{ m} \quad \text{..} \quad 15 \text{ m} \quad \text{..}\]

Transect y
METHODS

DATA ANALYSES

- Sampling effort and site diversity
 - Rarefactions and Chao estimates

- Diversity
 - Trapping results/Historical records
 - Ordination: Multiplicative beta (‘True’ β)
 - Pairwise Sorensen dissimilarity
 - Clustering (Sorensen similarity)
 - Non-metric Multidimensional scaling (NMDS)
 - Principal component analysis

Magurran 1998, Tuomisto 2012 (a,b)
RESULTS

- **Common species**
 - Rock mice (*Micaelamys* spp.)
 - Elephant-shrews (*Macroscelides/Elephantulus*)
 - Hairy-footed gerbil (*Gerbillususcus paeba*)
Rarefaction and Sampling Efficiency

- Chao asymptote estimation to estimate additional sampling effort to identify more species

86 – 92 % sampling efficiency (312 individuals)

765 additional individuals to obtain 100 %

NK = Nama-Karoo; GR = Grassland; SK = Succulent Karoo, SV = Savanna
RESULTS

Combining trapping results from historical records, we found:

- **α** (local) diversity: 2.92 (1-6 species/site) vs 5 (2-14 species/site)
- **γ** (regional) diversity: 14 vs 23
- **β** (species turnover between sites) diversity: 4.79 (+-1.58/0.70) vs 4.6 (+-7.43/0.50)

Graph:
- Nama-Karoo: Alpha = 5,000, Beta = 2,500, n = 16
- Succulent Karoo: Alpha = 3,000, Beta = 1,500, n = 1
- Albany Thicket: Alpha = 2,000, Beta = 1,000, n = 3
- Savanna: Alpha = 7,000, Beta = 3,500, n = 2
- Grassland: Alpha = 1,000, Beta = 500, n = 2

Note: The graph shows species richness per biome, with stars indicating significance levels.
RESULTS

DIVERSITY

- Diversity vs. Longitude

Pairwise Sorensen dissimilarity

Linear (Pairwise Sorensen dissimilarity)

\[y = 0.0233x + 0.3708 \]

\[R^2 = 0.48 \]

NK = Nama-Karoo; GR = Grassland; SK = Succulent Karoo, SV = Savanna, AT = Albany Thicket
RESULTS

NK = Nama-Karoo; GR = Grassland; SK = Succulent Karoo; SV = Savanna; AT = Albany Thicket
Principal component analysis

PCs scores/Environmental data

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>-0.644</td>
<td>0.732</td>
</tr>
<tr>
<td>NDVI</td>
<td>-0.534</td>
<td>-0.675</td>
</tr>
<tr>
<td>Annual Mean Temperature</td>
<td>0.721</td>
<td>-0.672</td>
</tr>
<tr>
<td>Max temp of warmest month</td>
<td>0.861</td>
<td>-0.179</td>
</tr>
<tr>
<td>Min temp of coldest month</td>
<td>0.428</td>
<td>-0.867</td>
</tr>
<tr>
<td>Annual precipitation</td>
<td>-0.794</td>
<td>-0.5671</td>
</tr>
<tr>
<td>Precipitation of wettest month</td>
<td>-0.853</td>
<td>-0.332</td>
</tr>
<tr>
<td>Precipitation of driest month</td>
<td>-0.651</td>
<td>-0.594</td>
</tr>
</tbody>
</table>
CONCLUSIONS

DIVERSITY

- Highest α/γ diversity = Nama-Karoo & Savanna
- High species turnover between biomes
- Savanna sites = most vulnerable

VULNERABILITY TO FRACKING

INCREASES ALONG PRECIPITATION GRADIENT

+ IMPORTANT BASELINE DATA
REFERENCES

- Chao et al. 2009
- Delcros et al. 2009
- Holness et al. 2016
- Magurran 1988
- Scholes et al. 2016
- Todd et al. 2016
- Tuomisto 2012 (A,B)
ACKNOWLEDGMENTS

- **SANBI**
- **ENDANGERED WILDLIFE TRUST**
- **SMALL MAMMAL GRANT**
- **Ms. Zoe Woodgate**
- **Farmers**
- **Justin O’Riaain & Gary Bronner**
ANY QUESTIONS?
LIMITATIONS - OUTLINES

- **LIMITATIONS**
 - Short time assessment
 - Vast area
 - Important logistical aspects
 - Decision makers
 - Guidelines purposes

- **RESEARCH OPPORTUNITIES**
 - Small mammals and vegetation
 - Long-term monitoring